direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×C4.F5, Dic5.15C24, C5⋊C8⋊1C23, C2.4(C23×F5), C10⋊1(C2×M4(2)), (C2×C10)⋊4M4(2), C10.2(C23×C4), C5⋊1(C22×M4(2)), (C22×C4).24F5, C4.43(C22×F5), C23.65(C2×F5), C20.83(C22×C4), (C22×C20).26C4, (C4×D5).83C23, (C23×D5).18C4, D10.44(C22×C4), C22.55(C22×F5), Dic5.44(C22×C4), (C2×Dic5).362C23, (C22×Dic5).282C22, (C2×C5⋊C8)⋊9C22, (C22×C5⋊C8)⋊8C2, (C2×C4×D5).38C4, (C4×D5).90(C2×C4), (C2×C4).146(C2×F5), (D5×C22×C4).30C2, (C2×C20).133(C2×C4), (C2×C4×D5).399C22, (C2×C10).96(C22×C4), (C22×C10).78(C2×C4), (C2×Dic5).198(C2×C4), (C22×D5).132(C2×C4), SmallGroup(320,1588)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C5⋊C8 — C2×C5⋊C8 — C22×C5⋊C8 — C22×C4.F5 |
Subgroups: 906 in 298 conjugacy classes, 156 normal (13 characteristic)
C1, C2, C2 [×6], C2 [×4], C4 [×4], C4 [×4], C22 [×7], C22 [×16], C5, C8 [×8], C2×C4 [×6], C2×C4 [×22], C23, C23 [×10], D5 [×4], C10, C10 [×6], C2×C8 [×12], M4(2) [×16], C22×C4, C22×C4 [×13], C24, Dic5, Dic5 [×3], C20 [×4], D10 [×4], D10 [×12], C2×C10 [×7], C22×C8 [×2], C2×M4(2) [×12], C23×C4, C5⋊C8 [×8], C4×D5 [×16], C2×Dic5 [×6], C2×C20 [×6], C22×D5 [×6], C22×D5 [×4], C22×C10, C22×M4(2), C4.F5 [×16], C2×C5⋊C8 [×12], C2×C4×D5 [×12], C22×Dic5, C22×C20, C23×D5, C2×C4.F5 [×12], C22×C5⋊C8 [×2], D5×C22×C4, C22×C4.F5
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], M4(2) [×4], C22×C4 [×14], C24, F5, C2×M4(2) [×6], C23×C4, C2×F5 [×7], C22×M4(2), C4.F5 [×4], C22×F5 [×7], C2×C4.F5 [×6], C23×F5, C22×C4.F5
Generators and relations
G = < a,b,c,d,e | a2=b2=c4=d5=1, e4=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >
(1 139)(2 140)(3 141)(4 142)(5 143)(6 144)(7 137)(8 138)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 119)(18 120)(19 113)(20 114)(21 115)(22 116)(23 117)(24 118)(33 126)(34 127)(35 128)(36 121)(37 122)(38 123)(39 124)(40 125)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 79)(48 80)(49 97)(50 98)(51 99)(52 100)(53 101)(54 102)(55 103)(56 104)(57 95)(58 96)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)(65 86)(66 87)(67 88)(68 81)(69 82)(70 83)(71 84)(72 85)(105 156)(106 157)(107 158)(108 159)(109 160)(110 153)(111 154)(112 155)(129 152)(130 145)(131 146)(132 147)(133 148)(134 149)(135 150)(136 151)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 49)(8 50)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(17 157)(18 158)(19 159)(20 160)(21 153)(22 154)(23 155)(24 156)(25 77)(26 78)(27 79)(28 80)(29 73)(30 74)(31 75)(32 76)(33 69)(34 70)(35 71)(36 72)(37 65)(38 66)(39 67)(40 68)(57 145)(58 146)(59 147)(60 148)(61 149)(62 150)(63 151)(64 152)(81 125)(82 126)(83 127)(84 128)(85 121)(86 122)(87 123)(88 124)(89 132)(90 133)(91 134)(92 135)(93 136)(94 129)(95 130)(96 131)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 118)(106 119)(107 120)(108 113)(109 114)(110 115)(111 116)(112 117)
(1 53 5 49)(2 50 6 54)(3 55 7 51)(4 52 8 56)(9 17 13 21)(10 22 14 18)(11 19 15 23)(12 24 16 20)(25 116 29 120)(26 113 30 117)(27 118 31 114)(28 115 32 119)(33 60 37 64)(34 57 38 61)(35 62 39 58)(36 59 40 63)(41 158 45 154)(42 155 46 159)(43 160 47 156)(44 157 48 153)(65 152 69 148)(66 149 70 145)(67 146 71 150)(68 151 72 147)(73 107 77 111)(74 112 78 108)(75 109 79 105)(76 106 80 110)(81 136 85 132)(82 133 86 129)(83 130 87 134)(84 135 88 131)(89 125 93 121)(90 122 94 126)(91 127 95 123)(92 124 96 128)(97 139 101 143)(98 144 102 140)(99 141 103 137)(100 138 104 142)
(1 89 21 42 87)(2 43 90 88 22)(3 81 44 23 91)(4 24 82 92 45)(5 93 17 46 83)(6 47 94 84 18)(7 85 48 19 95)(8 20 86 96 41)(9 155 134 53 125)(10 54 156 126 135)(11 127 55 136 157)(12 129 128 158 56)(13 159 130 49 121)(14 50 160 122 131)(15 123 51 132 153)(16 133 124 154 52)(25 102 105 33 150)(26 34 103 151 106)(27 152 35 107 104)(28 108 145 97 36)(29 98 109 37 146)(30 38 99 147 110)(31 148 39 111 100)(32 112 149 101 40)(57 137 72 80 113)(58 73 138 114 65)(59 115 74 66 139)(60 67 116 140 75)(61 141 68 76 117)(62 77 142 118 69)(63 119 78 70 143)(64 71 120 144 79)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,139)(2,140)(3,141)(4,142)(5,143)(6,144)(7,137)(8,138)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,119)(18,120)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(33,126)(34,127)(35,128)(36,121)(37,122)(38,123)(39,124)(40,125)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,97)(50,98)(51,99)(52,100)(53,101)(54,102)(55,103)(56,104)(57,95)(58,96)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,86)(66,87)(67,88)(68,81)(69,82)(70,83)(71,84)(72,85)(105,156)(106,157)(107,158)(108,159)(109,160)(110,153)(111,154)(112,155)(129,152)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(17,157)(18,158)(19,159)(20,160)(21,153)(22,154)(23,155)(24,156)(25,77)(26,78)(27,79)(28,80)(29,73)(30,74)(31,75)(32,76)(33,69)(34,70)(35,71)(36,72)(37,65)(38,66)(39,67)(40,68)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(81,125)(82,126)(83,127)(84,128)(85,121)(86,122)(87,123)(88,124)(89,132)(90,133)(91,134)(92,135)(93,136)(94,129)(95,130)(96,131)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,118)(106,119)(107,120)(108,113)(109,114)(110,115)(111,116)(112,117), (1,53,5,49)(2,50,6,54)(3,55,7,51)(4,52,8,56)(9,17,13,21)(10,22,14,18)(11,19,15,23)(12,24,16,20)(25,116,29,120)(26,113,30,117)(27,118,31,114)(28,115,32,119)(33,60,37,64)(34,57,38,61)(35,62,39,58)(36,59,40,63)(41,158,45,154)(42,155,46,159)(43,160,47,156)(44,157,48,153)(65,152,69,148)(66,149,70,145)(67,146,71,150)(68,151,72,147)(73,107,77,111)(74,112,78,108)(75,109,79,105)(76,106,80,110)(81,136,85,132)(82,133,86,129)(83,130,87,134)(84,135,88,131)(89,125,93,121)(90,122,94,126)(91,127,95,123)(92,124,96,128)(97,139,101,143)(98,144,102,140)(99,141,103,137)(100,138,104,142), (1,89,21,42,87)(2,43,90,88,22)(3,81,44,23,91)(4,24,82,92,45)(5,93,17,46,83)(6,47,94,84,18)(7,85,48,19,95)(8,20,86,96,41)(9,155,134,53,125)(10,54,156,126,135)(11,127,55,136,157)(12,129,128,158,56)(13,159,130,49,121)(14,50,160,122,131)(15,123,51,132,153)(16,133,124,154,52)(25,102,105,33,150)(26,34,103,151,106)(27,152,35,107,104)(28,108,145,97,36)(29,98,109,37,146)(30,38,99,147,110)(31,148,39,111,100)(32,112,149,101,40)(57,137,72,80,113)(58,73,138,114,65)(59,115,74,66,139)(60,67,116,140,75)(61,141,68,76,117)(62,77,142,118,69)(63,119,78,70,143)(64,71,120,144,79), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,139)(2,140)(3,141)(4,142)(5,143)(6,144)(7,137)(8,138)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,119)(18,120)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(33,126)(34,127)(35,128)(36,121)(37,122)(38,123)(39,124)(40,125)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,97)(50,98)(51,99)(52,100)(53,101)(54,102)(55,103)(56,104)(57,95)(58,96)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,86)(66,87)(67,88)(68,81)(69,82)(70,83)(71,84)(72,85)(105,156)(106,157)(107,158)(108,159)(109,160)(110,153)(111,154)(112,155)(129,152)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(17,157)(18,158)(19,159)(20,160)(21,153)(22,154)(23,155)(24,156)(25,77)(26,78)(27,79)(28,80)(29,73)(30,74)(31,75)(32,76)(33,69)(34,70)(35,71)(36,72)(37,65)(38,66)(39,67)(40,68)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(81,125)(82,126)(83,127)(84,128)(85,121)(86,122)(87,123)(88,124)(89,132)(90,133)(91,134)(92,135)(93,136)(94,129)(95,130)(96,131)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,118)(106,119)(107,120)(108,113)(109,114)(110,115)(111,116)(112,117), (1,53,5,49)(2,50,6,54)(3,55,7,51)(4,52,8,56)(9,17,13,21)(10,22,14,18)(11,19,15,23)(12,24,16,20)(25,116,29,120)(26,113,30,117)(27,118,31,114)(28,115,32,119)(33,60,37,64)(34,57,38,61)(35,62,39,58)(36,59,40,63)(41,158,45,154)(42,155,46,159)(43,160,47,156)(44,157,48,153)(65,152,69,148)(66,149,70,145)(67,146,71,150)(68,151,72,147)(73,107,77,111)(74,112,78,108)(75,109,79,105)(76,106,80,110)(81,136,85,132)(82,133,86,129)(83,130,87,134)(84,135,88,131)(89,125,93,121)(90,122,94,126)(91,127,95,123)(92,124,96,128)(97,139,101,143)(98,144,102,140)(99,141,103,137)(100,138,104,142), (1,89,21,42,87)(2,43,90,88,22)(3,81,44,23,91)(4,24,82,92,45)(5,93,17,46,83)(6,47,94,84,18)(7,85,48,19,95)(8,20,86,96,41)(9,155,134,53,125)(10,54,156,126,135)(11,127,55,136,157)(12,129,128,158,56)(13,159,130,49,121)(14,50,160,122,131)(15,123,51,132,153)(16,133,124,154,52)(25,102,105,33,150)(26,34,103,151,106)(27,152,35,107,104)(28,108,145,97,36)(29,98,109,37,146)(30,38,99,147,110)(31,148,39,111,100)(32,112,149,101,40)(57,137,72,80,113)(58,73,138,114,65)(59,115,74,66,139)(60,67,116,140,75)(61,141,68,76,117)(62,77,142,118,69)(63,119,78,70,143)(64,71,120,144,79), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([(1,139),(2,140),(3,141),(4,142),(5,143),(6,144),(7,137),(8,138),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,119),(18,120),(19,113),(20,114),(21,115),(22,116),(23,117),(24,118),(33,126),(34,127),(35,128),(36,121),(37,122),(38,123),(39,124),(40,125),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,79),(48,80),(49,97),(50,98),(51,99),(52,100),(53,101),(54,102),(55,103),(56,104),(57,95),(58,96),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94),(65,86),(66,87),(67,88),(68,81),(69,82),(70,83),(71,84),(72,85),(105,156),(106,157),(107,158),(108,159),(109,160),(110,153),(111,154),(112,155),(129,152),(130,145),(131,146),(132,147),(133,148),(134,149),(135,150),(136,151)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,49),(8,50),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(17,157),(18,158),(19,159),(20,160),(21,153),(22,154),(23,155),(24,156),(25,77),(26,78),(27,79),(28,80),(29,73),(30,74),(31,75),(32,76),(33,69),(34,70),(35,71),(36,72),(37,65),(38,66),(39,67),(40,68),(57,145),(58,146),(59,147),(60,148),(61,149),(62,150),(63,151),(64,152),(81,125),(82,126),(83,127),(84,128),(85,121),(86,122),(87,123),(88,124),(89,132),(90,133),(91,134),(92,135),(93,136),(94,129),(95,130),(96,131),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,118),(106,119),(107,120),(108,113),(109,114),(110,115),(111,116),(112,117)], [(1,53,5,49),(2,50,6,54),(3,55,7,51),(4,52,8,56),(9,17,13,21),(10,22,14,18),(11,19,15,23),(12,24,16,20),(25,116,29,120),(26,113,30,117),(27,118,31,114),(28,115,32,119),(33,60,37,64),(34,57,38,61),(35,62,39,58),(36,59,40,63),(41,158,45,154),(42,155,46,159),(43,160,47,156),(44,157,48,153),(65,152,69,148),(66,149,70,145),(67,146,71,150),(68,151,72,147),(73,107,77,111),(74,112,78,108),(75,109,79,105),(76,106,80,110),(81,136,85,132),(82,133,86,129),(83,130,87,134),(84,135,88,131),(89,125,93,121),(90,122,94,126),(91,127,95,123),(92,124,96,128),(97,139,101,143),(98,144,102,140),(99,141,103,137),(100,138,104,142)], [(1,89,21,42,87),(2,43,90,88,22),(3,81,44,23,91),(4,24,82,92,45),(5,93,17,46,83),(6,47,94,84,18),(7,85,48,19,95),(8,20,86,96,41),(9,155,134,53,125),(10,54,156,126,135),(11,127,55,136,157),(12,129,128,158,56),(13,159,130,49,121),(14,50,160,122,131),(15,123,51,132,153),(16,133,124,154,52),(25,102,105,33,150),(26,34,103,151,106),(27,152,35,107,104),(28,108,145,97,36),(29,98,109,37,146),(30,38,99,147,110),(31,148,39,111,100),(32,112,149,101,40),(57,137,72,80,113),(58,73,138,114,65),(59,115,74,66,139),(60,67,116,140,75),(61,141,68,76,117),(62,77,142,118,69),(63,119,78,70,143),(64,71,120,144,79)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])
Matrix representation ►G ⊆ GL8(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 27 | 0 | 14 |
0 | 0 | 0 | 0 | 0 | 34 | 27 | 14 |
0 | 0 | 0 | 0 | 14 | 27 | 34 | 0 |
0 | 0 | 0 | 0 | 14 | 0 | 27 | 7 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 39 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 25 | 15 | 2 |
0 | 0 | 0 | 0 | 40 | 27 | 30 | 27 |
0 | 0 | 0 | 0 | 14 | 11 | 14 | 1 |
0 | 0 | 0 | 0 | 39 | 26 | 16 | 16 |
G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,9,9,0,0,0,0,0,0,0,0,7,0,14,14,0,0,0,0,27,34,27,0,0,0,0,0,0,27,34,27,0,0,0,0,14,14,0,7],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,40,40,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,40,39,0,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,25,40,14,39,0,0,0,0,25,27,11,26,0,0,0,0,15,30,14,16,0,0,0,0,2,27,1,16] >;
56 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 5 | 8A | ··· | 8P | 10A | ··· | 10G | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 5 | ··· | 5 | 4 | 10 | ··· | 10 | 4 | ··· | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | M4(2) | F5 | C2×F5 | C2×F5 | C4.F5 |
kernel | C22×C4.F5 | C2×C4.F5 | C22×C5⋊C8 | D5×C22×C4 | C2×C4×D5 | C22×C20 | C23×D5 | C2×C10 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 2 | 1 | 12 | 2 | 2 | 8 | 1 | 6 | 1 | 8 |
In GAP, Magma, Sage, TeX
C_2^2\times C_4.F_5
% in TeX
G:=Group("C2^2xC4.F5");
// GroupNames label
G:=SmallGroup(320,1588);
// by ID
G=gap.SmallGroup(320,1588);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,1123,136,102,6278,818]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=1,e^4=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations